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V Abstract 

In the analysis of a packetized communication system such as a slotted 

ALOHA, one needs to deal with discrete-time point processes and related 

queues. We examine how Poisson processes, M/M/l queue, M/G/-, etc., should 

be translated in their discrete-time versions. We then give a new definition 

of processor-sharing and its properties. Correlation functions of input and 

output processes in an M/G/a> are also studied. 
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I.  INTRODUCTION 

In the analysis of a packetized comraunication system, one needs to 

deal with discrete-time point processes. One may quickly conclude that 

most results and formulas known for continuous-time processes can be trans- 

lated into their discrete time versions in obvious manner, unfortunately, 

this turns out not to be the case. The main problem lies in that a Poisson 

process lias two discrete time analogs, one is a Bernoulli sequence, and the 

other is a Poisson sequence. A discrete time version of an M/M/l system 

holds for a Bernoulli arrival sequence, whereas an M/G/<» can be translated 

only for a Poisson sequence as will be discussed in Sections II and III. 

Important results obtained for an M/G/l system under processor sharing (PS) 

cannot be interpreted for the round-robin (RR) scheduling, despite the fact 

the notion of the PS scheduling was originally derived from RR. Thus we 

introduce a new notion of processor sharing. 

This note is therefore intended to examine some fundamentals issues 

of discrete time point processes and related queueing systems. Applications 

of these results to modeling and performance analysis of a slotted ALOHA 

SYSTEM will be discussed in subsequent reports. 

I 
r. 
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II. A POISSON SEQUENCE WITH RANDOM DELAY: SYSTEM M/G/°° 

Definition 2.1: A discrete-time point process X. is called a Poisson 

sequence i£ {Xk:k=0,l,2,...} are i.i.d. with Poisson 

distribution of constant mean X. 

Consider a point process X(t), and let us define X, as the number 

of points (arrivals) in the interval (k-l)T<t<kT. Clearly, if X(t) is 

a Poisson process with ratt; n, then Xk is a Poisson sequence with mean 

X=yT. For example, the number of messages arriving into a slotted ALOHA 

channel from a large number of terminals can be accurately characterized 

by a Poisson sequence. 

Random Delay 

Suppose that each element (e.g., message or job) of a discrete-time 

point process is passed through a "random delay" (RD) as depicted in Figure 

2.1. Each element (message) stays in one of the infinite boxes for a 

random amount of time Q. The delays of the individual messages are chosen 
00 

independently, but from a conmon distribution {f(d)}, Y f(d)=l. Backlogged 
d=0 

messages in a slotted ALOHA channel with random access scheme, for example, 

can be modelled in this manner. 
Random Delay 

input 
sequence 
 >- 

f(d 

(d) 

•f(d) 

output 
sequence 
 »— 

Figure 2.1 
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The notion of random delay is equivalent to a service station which 

has infinite servers in parallel. In this case f(d) corresponds to 

servier time distribution. The notion of infinite servers is applicable 

even to a finite set of parallel servers, provided the number is sufficient 

that no queue is fonned. For example, a collection of user terminals in 

a finite population model of an ALOHA SYSTB1 can be characterized by RD, 

in which f(d) is the probability nf the terminal think time d. 

Property 2.1:  For a Poisson arrival sequence with rate A, the probability 

that there are n jobs (messages) in the RD at time k is 

p(n;k) =f d=0 n, 
)    exp j"^»» (2.1) 

r 
where F (d) is the conplementary distribution of delay 

d: 

FC(d) = ProbIdelay>d] 

■ I  f(i) (2.2) 
i>d 

In the limit k-*», we have the following equilibrium 

distribution 

n 
PCn) = || e'p (2.3) 

where 

P ■ ^E[d] (2.4) 

• ■■- •"• ■' ■ . ". •" ■"  •". •'. -'. -". •". -■. -• -• ■• «". •• .- v" .r -,■•.-->•---••••• . ■ ■. 
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Furthermore, the iat (departing) process from RD is also a Poisson 

sequence with mean X. 

Proof. See Appendix A. 

Different Classes of Messages or Terminals 

Suppose that there are R different classes of messages (or terminals) 

with different delay (or think time) distributions F (d)= J f (i) r-1,2 ...R. 
r   ^_0 r 

Let us denote the system state by vector 

- = tni»n2'---»nRJ 

where nr is the number of jobs in RD at a given time. If class-r messages 

arrivals are independent Poisson sequences with rates X , the probability 

of the systan state at time k is 

R 
P(n;k) = n pfn -k) 

r=l r r (2.5) 

where Pr(nr;k) takes the form of (2.1). In the limit to 

R p'V 
P(n) = n -h- e-Pr 

j=lnr' 
(2.6) 

The corresponding probability generating function (p.g.f.) is given by 

Q(zJ = E 
R  n, 
n z ^ 

Lr=l r . 

R 
«P W^rj (2.7) 

where 

R R 
Ur ■ ^.Bt^J (2-8) 

-*-■-*-  ' — ^  ^_   .  . 
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Thus, the p.g.f. of the marginal distribution of the total number of messages 

in RD is 

Q(z) = exp{-p+-pz} (2.9) 

which yields the distribution of n ■ J n. : 
r=l 

P(n) =^e-P t2.10) 

■* -  *  -  - -  * ^ . .1 ■ 
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III. A BERNOULLI SEQUENCE A'JD GEOMETRIC DISTRIBUTION OF MESSAGE LENGTH: 

SYSTEM M/M/l 

Definition 3.1: A discrete time 0-1 valued process X, is called a Bernoulli 

sequence with parameter X if {Xk;k=0,l,2,...} are i.i.d. 

with distribution P[Xk=l]=X , and P[Xk=0]=l-X, for all k. 

Let Ti be the number of zero runs (which hereafter we call "run-length") 

between the (i-l)^ one and the ith one in {Xk}. Then {T^ are i.i.d. with 

geometric distribution. 

PfTj-t] »XCl-X)1       4-0.1,2,...    (3.1) 

Thus the average run-length is 

EtTiJ " ^ (3.2) 

For example, the sequence of messages from a user teiminal is often 

modelled as a Bernoulli sequence, and the variable T is often called the 

"thinking time". In a discrete-time queueing system, the Bernoulli process 

plays a role equivalent to that of a Poisson process in a continuous-time 

queueing. system. 

Definition 3.2: A discrete-time queueing system is denoted by M/M/l if 

its message (job) arrival sequence is a Bernoulli sequence, 

the message lengths (job service times) are i.i.d. with a 

geometric distribution, and there is only one channel 

(server). 

■~  -*"-"■ -    -■—.-'..—'. J!    '  - ■    »      _»  - ■»_ - m . fc . -  ■ -  ■ - - _ J    -    . - » - 
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Definition 3.3: A queueing (scheduling) discipline is said to be a work- 

oonserving discipline [8] if (1) the lengths of each message 

are not affected by the queue discipline; (2) the queue 

discipline cannot take advantage of possible knowledge 

about message arrival times or message lengths; and (3) 

the channel should not be idle if there are some messages 

to be sent. 

Because of the so-called memoryless property of geometric distribution, 

the state of the system M/M/l under a work-conserving discipline can be 

defined simply by n, the number of messages in the system (either being 

transmitted over the channel or waiting in the queue). Suppose that the 

message generating probability is dependent on the system state, and we 

denote it by X(n)[message/slot time]. Similarly, assume that service rate 

(or channel speed) is dependent on the system state and denoted by C(n) 

[packets/slot time]. If the number of packet length L in a message is 

geometrically distributed with parameter r (i.e., the average message has 

— 1-r 
the length L= -^ [packets]) 

P[L=£] = rd-r)5,     £=0,1,2,... (3.3) 

we obtain the following result by solving a discrete time version of the 

birth-and-death process: 

Property 3.1: The equilibrium state distribution of n in the M/M/l under a 

work-conserving discipline, if it exists, is given by 

P(n) = p(0)A(n)D(n)l?1 (3.4) 

t^äm 
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where 

A(n) « n X(i-l) (3.5) 
i=l 

DCn)  "JjCTIT V'V 

Note the existence of the equilibrium distribution (i.e., the condition 

for system stability) is equivalent to the condition that the p.g.f. 

00 

QOO = P(0) I A(n)DCn)Crz)n (3.73 
n=0 

is analytic inside the unxC disc |z|=l. 

The unkncrwi constant is given by setting Q(l)=l: 

00 

P(0)_1 = I HnMn)^ C3.8) 
n=0 

From the above result we can also show 

Property 3.2: The output (departure) process with time "reversed" is a 

Bernoulli process with rate X(n), where n is the "current" 

state of the system. Thus if the arrival is a homogeneous 

Bernoulli process with rate X, so is the output sequence. 

An exact analogy between continuous-time and discrete-time queueing 

systems breaks down, however, because Bernoulli processes do not possess the 

"reproducing" property under addition. Consider a time interval of arbitrary 

longtli [time slotsJ and consider m independent Bernoulli sequences. The 

number of arrivals nk from the k
th stream during this interval is the binomial 

^1 i_ ■  

- • - .• . 
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distribution with mean X, 

P[nk] " (nkj
Xk ^"V 

which has the p.g.f. 

\it) =  (l-Xk(l-x)) 
N 

(3.9) 

(3.10) 

Thus the total number of arrivals from all to m sources has the p.g.f. 

fml     m       m        u 
GlmJ(z) = n Gk(Z) = n {l-Xv(l-z)}

N     (3.11) 
k=l K    k=l  k 

If in particular \ = ^   for all k=l,2,..., m 

)mN 

In the limit 

Gtm)U) = {l-i(l-z)} 

limGW(z) ^e-^1-2"* 
m**> 

(3.12) 

(3.13) 

Thus the superposition of many independent Bernoulli sequences with same 

rates converges in the limit to a Poisson sequence. 

■ftfeft*«*^*^!^ ■-'-'- 
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IV. PROCESSOR-SHARING AND GENERAL MESSAGE LENGTH DISTRIBUTION 

Definition 4.1: We define processor-sharing in a discrete time queueing 

system as a dispatching algorithm which selects, in every 

slot time, one of n messages in the system randomly and 

equally likely. 

For example, we can approxünate a slotted ALOHA channel I y a processor 

shared server with queue-dependent rate C(n). (How to detemine the 

function C(n) for a slotted ALOHA channel will be discussed in details in 

a forthcoming report.) Note that the notion of processor-sharing in a 

discrete-time system is different from the so-called round-robin (RR) sched- 

uling. When the time quantum or slot time approacies zero, the notions of 

RR and PS defined above are both reduced co the familiar notion of PS in con- 

tinuous-time queueing theory. We can establish the following important result 

on PS. Tte corresponding result in continuous-time queueing system is discussed 

in many recent articles (e.g., [1,2]). 

Property 4.1: Let a message sequence be characterized by a Bernoulli sequence 

with rate A(n), and let the distribution of the number of 

packets in a message be a general distribution F. (£) with 
Li 

mean L [packets], i.e.. 

00 

L =   1ÄM (4.1) 1=0 

If the queue discipline is PS and processing rate is C(n) [packets/slot time], 

then the equilibrium distribution of n is given by the formula (3.4): 

P(n) = p(0)A(n)D(n)r;n (4.2) 

■A-^ ^_^ ^_ . .__ , . ^_ ._^_; , =—_;-^^j-;. ■  ■  .  . ■-■-■■_.,_,    _...._ 



 "•■ '      ' ■  ■■ " ■ ■      "  
—- 

11- 

Proof:    Let $Cz) be the p.g.f. or z-transform of the message length 

distribution: 

*(z) = iy{FL(i)-FLCi-l)) 
i=0 

(4.3) 

which is a discrete analog of the Laplace-Stieltjes transform. 

If $(z) can be written as a rational function of z: 

^ = Sf| 
we can obtain the following expansion 

(4.4) 

Hz) .b^J^...^^ J^ (4.5) 

ot. rri   2 j—r±  i—i 

b =1 
q 

Figure 4.1 

^^MMMlM^Ütei^^^y^^i. 
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where q is the degree of the polynomial Q(z),  and {a'1}  are the character- 

istic roots of Q(z)=0. The coefficients {a.] and {b.} satisfy 

ai + bi = 1       0<iiq-l (4.6) 

and 

\=1 (4.7) 

The representation (4.5) is schematically shown in Figure 4.1, which can be 

viewed as cascaded geometric distributions* with parameters c.,,a-,...,a . 

This expansion is a discrete analog of CJX'S representation [3] of a general 

service time distribution whose Laplace-Stieltjes transform is a rational 

function of the Laplacian variable s. Appendix B discusses illustrative 

examples of the expansion (4.5). 

We define the system state by the vector n={n. ,l<j<_q} where n. is the 

number of messages in the system which are currently in the jth (fictitious) 

geometric server in tht representation of Figure 4.1. We define n(j") as ths 

state obtained by reducing its j  component n. by one, and n(j+) is obtained 

b) adding unity to the j  conponent. Similarly the transition {state n(j+,i") 

^ state n) takes place if one of the j111 elements moves to the i^1 component. 

Let P[n;k] be the probability that the system is in state n at slot time k. 

* Wote that this distribution takes a slightly different form from (3.3): 

P^-Ä] -a^a-o^        *=1,2,3,... 
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To calculate P[n;k+1], we note that the system equation can be written as follows; 

P[n;k+1] = P[n;k]{l-X(n)- I  j n.äXCn)} + P[na') ;k]X(n-l) 

+ ikl   % ptüO+);k](n.+l)ä.b.CCn+l) 
j=l        J       J J 

+ n ,? PfeO-l^J^^Kn^^Däj^tj^cCnD      (4.8) 

where aJ = 1 - aj (4.9) 

The steady state distribution, if it ever exists, must satisfy the balance 

equation (4.8)  in which we set &In;k+l]=i™P[n;k]=P[nJ.    Then after k-*» 

rather extensive manipulation we can show that the following recurrence 

relation is a sufficient condition for the global balance equation. 

n. 
jpöjCöOPlnJ = eJ^n-i^ntk")] (4.10) 

for all i=l,2,...q and for all states n.    The equation (4.10) is a discrete 

system equivalent of the local balance equation or individual balance equation 

discussed in [4,5,1,2].    In (4.10) the new quantity ek is the probability that 
th a message ever reaches the k  (fictitious) service stage 

k-1 
ek = n a. 

By using the recurrence equation repeatedly we obtain 

q  i /eAni 
P[n] = P(0)A(n)D(n)n! n ^-f — 

i-1 ni- V^/ 

Then the marginal distribution of n=n1+n2+.. .+n   is given by 

(4.11) 

(4.12) 

P(n) = p(0)A(n)D(n)L i-n 
(4.13) 

' •  ' -     --»■-. 

-  - i ■ -  • - k. 
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where 

L = 
i-1 ui  1=0 

L= j ^ = I C1-FL(1)) (4.14) 

The outpv (departure) process from the PS syston has the same property 

as M/M/l which was stated as Property 3.3. 

Different Classes of Messages 

The above result can be generalized to messages with different classes. 

Property 4.2: Let R independent message streams be characterized by 

Bernoulli sequences with rates f X(n), where f is the 
Rr r 

fraction of the r  class, J f =1. Let the message length 
r-1 

distributions be Fr(J!,), r=l,2,...,R. If the channel 

(or server) adopts the PS discipline with rate C(n), the 

joint distribution, P[{nr}], in equilibrium is given by 

P[{nr}] = P(0)A(n)D(n)n! n ^ (CjJ** (4.15) 
r=l t 

where L    [packets] is the average length of the class-r mes- r 

sage: 

Lr ■ I Ü-F-CA)} (4.16) 
Jl»0 

Hence, the distribution of the total number of messages in the 

system is 

P(n) = P(0)A(n)D(n)Ln (4.17) 

■----'-   -■-■-■-    -   -       -   -    -   ^       -  • a. . . • - - - • . * . . . ■ m m . . .  _. 
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where 
R 

L =    I f L 
r=lrr 

(4.18) 

• 
kkakMkatoiyMft^^^lriMäM-li ■ • ■    ■ 
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V. CORRELATION FUNCTlCwS 

In this section we discuss some statistical properties of discrete time 

processes observed in a system like slotted ALOHA. One of the crucial 

assumptions usually made in the analysis of such system is the Poisson 

sequence approximation of the total traffic into a channel. As the first 

step toward a more accurate characterization, correlation functions of 

the related processes are examined. 

Let {Xk} be a stationary discrete time point process and be passed 

into the RD (random delay device) and we denote the output'sequence by 

{Yk}. We define autocorrelation and cross-correlation functions as in the 

usual way: 

RJOJCM] AE[(xk-r)(x£-r)] (5.i) 

RxyCM) A E[(Xk-r)(YJl-Y)] (5.2) 

etc. 

Property 5.1:    For a wide-sense stationary sequence {Xk}, we have 

R^CM) = I^CMOf,.,, (5.3) 

and 

XäM(1" Jfk-k'W (5.4) 

-3—£—j*—-*-—'—*- j---*-" -■■- "-"■ * -- ^ , - ^ -^" -■* - «■- » _ -^ ^ - *■■ - ■ -.  —    -..^   -,.■.■.,.   .. -.    ^ . ^ i ^ 1. > ^. 
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where {fk} is the probability that the delay length is k 

[time slots], and 6k t  is Kronecker's delta. 

Proof: See Appendix C. 

Equation (5.3) has a resemblance to the well known formula for the 

cross-correlation between a linear filter input and output, in which the 

impulse response of the filter is {f^}. Equation (5,4) is different, how- 

ever, from the corresponding expression for the linear filter output, which 

does not possess the second term of (5.4). 

For example, if the input is a Poisson sequence with rate X, then 

Rxx(k,£
,)=X6kJll . Therefore, 

RXY(k,Jl) = Af i-k (5.5) 

and 

«YY^^ = ^/k-k'Vk'-^/k-k^-k'^k,. 

A6 k,i (5.6) 

which is consistent with the earlier result that {Yk} is also a Poisson 

sequence. 

"---'- - -  ■ _ ■■ ' 
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As the second example, consider the case where X, is a Bernoulli sequence 

with rate X. Then X=A and 

Thus 

RxxCM) = X(l-A)6k £ 

R^dCÄ) = -A2 lfk.y,fz.k,+Uk>l 

(5.7^ 

C5.8) 

which is sufficient to conclude that Yk is neither Bernoulli nor Poisson. 
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APPENDIX A 

Proof of Property 2.1 

The following proof is essentially a discret-j analog of the result known 

for M/G/" [7]. Consider a message which has arrived by slot time k. The 

uniformity of Poisson process indicates that the arrival time j is uniformly 

distributed over k slots. The message will be still in RD at slot time k 

(J) with prob P[delay>k-j+l]=l-F(k-j)=FC(k-j). The probability that a 

message is still in RD at slot k given the condition that the job lias arrived 

by that slot is therefore 

Clearly 
j=i     K d=o 

lim p = E[d 

(A-l) 

(A-2) 

Suppose that n messages have arrived by slot time k. Since their 

delay times in the RD are i.i.d., the probability that i messages are still 

in RD at time k is given by 

(?) P^l-P)11"1     0<i<n (A-3) 

For a Poisson arrival sequence with rate X, the number n is Poisson 

distributed with mean Xk: 

(Xk)n Q-Xk 
n! 

CM) 

Thus the probability that there are i messages in RD at time k is: 

Pi« ■ J.^T .■xk-(») P^I-P)"-
1
 . fi^ii o-x*p (.AS) 

-. -v. 
■ -   • - 

. •  -     .       -      -    • . 
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By substituting (A-l) into (A-S), we obtain (2.1). 

With p defined by (A-l), 1-p represents the probability that an 

arbitrary message which has arrived by slot k has departed already. 

Therefore, the total number of messages j that have departed by the end of 

slot k is obtairec. by substituting 1-p for p in (A-5): 

qj(k) = wii2]iie-Ak(i-p) (A.6) 

k-1 
which is again a Poisson distribution but with mean X )* F(d). We can show 

d=0 
that the number leaving RD at the end of (k-l)st slot is independent of the 

number of messages left at slot time k. This independence of the past 

departure process and current state of the system is important. It follows 

that the number of departures in different slots are statistically independ- 

ent. Thus, we can show that the number of departure in slot k is Poisson 

distributed with mean XF(k-l). In the limit ?:lm,\F(k-l)=x. 
j^-H30 
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APPENDIX B 

On the Expansion of (4.':j 

The geometric stage representation of a general discrete distribution 

involves the fomal use of complex transition probabilities, since the 

characteristic roots a?1 of $(z) can take on complex values. Of course 

we can choose a different type of erpansion in which all parameters are 

real. This involves in general serial-parallel combination of geometric 

distributions and will not be given in such compact form as the expansion (4.5) 

Notp also that we do not really need to find expansion parameters {a.} {a.) 

and {bi}. The final result (4.13) does not include these parameters. In 

this sense the representation (4.5) is analogous tc the Fourier series 

expansion or general orthogonal expansion used in signa analysis. 

To give the reader some feel of the representation (4.5), we will show 

illustrative examples in which expansion coefficients are easily found. 

(1) The distribution 

W - Cyj1) tt-ajS."        k.0,1,2,...  (B-l) 

is a variant of the negative binomial or Pascal distribution. Its p.g.f. 

is 

•(.).J0f(k).
k.(Iäg)

q (B-2) 

Thus the expansion (4.5) is simply obtained by setting all a. 's to be 

unity and a1=a2=...=a =a. 

(2) The Poisson distribution 

Xk -A 
f (k) = ^r e A     k>0 (B-3) 

-  ,  , 
■^-t-^^u:-^-^-a-^^^-^^ ^  
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has the corresponding p.g.f. 

Kz) = e^2-^ (B-4) 

This is clearly not a rational function of z. If we allow, however, 

the formal passages to the limit we can represent $Cz) as 

See [6] for an exanple in which probability parameter a. 's are conplex. 

  ■---■---.._■ -------  - - 
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APPENDIX C 

Derivation of Property 5.1 

We write the output process Y. as 
At 

1   j=o z 

where z£(j) is a contribution from X, to the value V., i.e., 

z^Cj) = n   with   (n
J)f"-J(1'fA-j 

xr„ 

(C-l) 

0<n<X.     (C-2) 

Then 

E[XkY£] =    J E^O)] 

UV^)^2}fH (C-3) 

Therefore 

R^Ck.*) = EIX^J  - XY =   iRjotCkJ)^ (C-4) 

which proves (5.4) 

^t^^ 
'-'••''  t__:   J 
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From (C-l) we write for k^Ä 

EPfkYt] - E 
k i 

J-0 *    - i=0 

1 j "^      i m n 
mn E m !n!tX.-m-n)!  VA-iC1"fk-i'f)l-i) 

CC-5) 

Hence for tyl 

vk'V -- u^iV^hrq^-ih-i CC-6) 

For k=i,  (C-5) should be modified as 

,2 EIYy = I lfk-iEIXiVfk-i + I J 
i J J       ^      i m 

ni2E 
XA   ,„ X.-m 

.m (C-7) 

Then writing m   = m(m-l)+m, we have 

TF   Vr2 ~ R^Ck.k) = V ^.^(io)^.-^ ^_i+X p^. CC-8) 

k 
For sufficiently large k,    £ fv 4-l, hence we obtain (5.4). 

i=0 K"1 

riMBM^^rta --*       ---*--■-■-    •     •     •     ' -     -     -     ' •     . . 1 - ■   -    - 
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